Normal-Mode Observations

Measurements of the central frequency, Q, and splitting of various spheroidal and toroidal modes have been made.


Spheroidal mode frequency and Q estimates

The observed and PREM predicted center frequencies are listed in $\mu$Hz under f and fPREM under Q and QPREM.The splitting width, w, is the frequency difference between the highest and lowest frequency singlets. The splitting ratio, r, is the ratio of the observed splitting width to the splitting width predicted due to the effects of rotation and hydrostatic ellipticity. Core-sensitive modes are labeled by an asterisk.

Tab-delimted text version also available.

Mode fPREM f QPREM Q w r
0S3 468.56 468.29+/-0.20 417 327+/-70 13.05 1.00
0S4 647.08 646.86+/-0.11 373 408+/-38 9.54 1.00
0S5 840.44 840.02+/-0.08 355 376+/-33 7.23 1.02
0S6 1038.23 1037.55+/-0.08 347 356+/-8 5.93 1.16
0S7 1231.81 1231.04+/-0.09 342 338+/-8 5.18 1.46
0S8 1413.53 1412.74+/-0.09 337 332+/-11 4.59 1.73
0S9 1578.30 1577.02+/-0.12 332 332+/-10 3.89 1.53
0S10 1726.49 1724.55+/-0.13 327 281+/-7 4.05 1.17
1S2 679.86 680.34+/-0.21 310 377+/-97 11.43 1.00
1S3 939.83 940.02+/-0.05 282 316+/-11 14.89 1.00
1S4 1172.85 1172.83+/-0.10 271 291+/-22 18.33 1.00
1S5 1370.27 1370.04+/-0.13 291 314+/-29 19.77 1.00
1S6 1522.04 1521.53+/-0.28 345 429+/-51 16.59 1.03
1S7 1655.52 1654.49+/-0.25 372 415+/-36 14.19 1.08
1S8 1799.31 1798.00+/-0.24 379 456+/-37 14.72 1.19
1S9 1963.76 1962.11+/-0.38 380 388+/-40 15.80 1.28
1S10 2148.45 2146.84+/-0.66 378 371+/-45 15.94 1.29
2S3* 1242.19 1243.03+/-0.06 415 387+/-14 8.30 1.62
2S4 1379.19 1379.74+/-0.20 380 388+/-45 5.16 1.32
2S5 1514.93 1515.79+/-0.92 302 336+/-77 5.86 1.53
2S6 1680.84 1681.34+/-0.20 237 237+/-8 9.68 1.33
2S8 2049.21 2050.11+/-0.19 197 212+/-3 15.91 1.25
3S1* 943.94 944.44+/-0.08 819 814+/-54 3.21 1.00
3S2* 1106.21 1106.30+/-0.11 366 312+/-25 10.25 1.58
3S8* 2819.64 2819.90+/-0.41 263 247+/-13 10.81 2.12
4S1 1412.63 1411.45+/-0.15 355 369+/-17 8.68 1.01
4S2 1722.30 1721.56+/-0.05 434 495+/-19 6.02 1.03
4S3 2048.96 2048.35+/-0.06 480 547+/-12 6.82 1.12
4S4 2279.60 2278.57+/-0.28 290 278+/-22 7.33 1.24
5S3* 2169.66 2169.18+/-0.27 292 311+/-31 7.27 1.27
5S4 2379.52 2379.38+/-0.06 489 526+/-26 7.64 1.12
5S5 2703.35 2703.54+/-0.12 502 571+/-33 9.39 1.14
5S6 3010.69 3011.27+/-0.15 506 565+/-31 11.19 1.19
5S7 3290.76 3291.45+/-0.10 492 542+/-34 12.68 1.26
5S8 3525.65 3525.93+/-0.18 418 460+/-34 13.20 1.40
5S12 4695.98 4695.75+/-0.30 385 417+/-16 22.71 1.71
6S3* 2821.72 2821.91+/-0.13 426 451+/-29 11.46 2.98
6S10 4210.76 4211.27+/-0.17 354 375+/-5 19.78 1.64
7S4* 3413.22 3411.22+/-0.28 333 277+/-32 11.59 1.73
7S5* 3659.75 3657.73+/-0.08 477 491+/-32 9.10 1.67
7S6 3958.73 3956.81+/-0.11 504 667+/-84 10.45 1.67
7S7 4237.86 4233.99+/-0.15 415 462+/-8 12.03 1.75
8S1* 2873.36 2872.62+/-0.06 929 984+/-54 5.75 1.41
8S5* 4166.20 4165.38+/-0.08 611 690+/-63 14.05 2.15
8S7 4650.44 4645.15+/-0.15 351 375+/-11 17.66 1.95
9S3* 3554.98 3557.08+/-0.18 777 625+/-62 11.89 2.14
9S14 6768.24 6763.73+/-0.46 484 469+/-6 24.14 1.74
11S4* 4766.87 4766.11+/-0.03 701 810+/-19 14.35 2.08
11S5* 5074.41 5072.83+/-0.10 665 661+/-52 13.39 1.79
12S8 6137.16 6132.17+/-0.18 567 562+/-16 16.06 1.55
12S12 7455.08 7448.99+/-0.43 570 456+/-10 22.33 1.78
13S1* 4495.73 4494.83+/-0.33 735 648+/-73 14.72 2.30
13S2* 4845.26 4845.72+/-0.11 878 891+/-18 16.92 2.54
13S3* 5193.82 5193.54+/-0.07 908 970+/-34 12.63 1.69
16S5* 6836.40 6830.57+/-0.08 581 593+/-27 25.61 2.42
16S7* 7474.13 7472.18+/-0.34 800 452+/-13 18.56 1.58
17S1* 6129.05 6123.83+/-0.88 716 597+/-47 7.14 0.89
17S12 9151.29 9145.47+/-1.99 462 414+/-58 29.49 2.01
17S13 9435.95 9428.13+/-0.29 554 553+/-10 28.44 1.91
18S3* 6891.92 6886.27+/-0.10 851 865+/-85 19.69 2.00
18S4* 7240.99 7238.49+/-0.08 943 1003+/-71 19.77 1.83
21S6* 8850.77 8849.46+/-0.34 740 575+/-74 26.46 1.94
21S7* 9173.79 9172.14+/-0.50 800 658+/-98 27.74 1.97
21S8* 9496.96 9495.01+/-0.47 667 573+/-44 29.09 1.99
23S4* 8941.57 8937.42+/-0.21 809 904+/-100 24.16 1.88
23S5* 9289.58 9290.07+/-0.20 899 934+/-79 24.40 1.78
27S1* 9485.85 9493.79+/-0.50 648 818+/-84 28.87 2.35



Radial mode frequency and Q estimates

The observed and PREM predicted center frequencies are listed in $\mu$Hz under f and fPREM,and the observed and predicted quality factors are listed under Q and QPREM.

Mode fPREM f QPREM Q
1S0 1631.34 1631.64+/-0.01 1499 1835+/-154
2S0 2510.48 2509.77+/-0.02 1241 1721+/-183
3S0 3271.19 3272.59+/-0.03 1083 1217+/-50
4S0 4105.77 4106.55+/-0.01 969 1252+/-53
5S0 4884.20 4888.48+/-0.02 920 1181+/-78
6S0 5740.28 5742.03+/-0.01 913 1130+/-85
8S0 7424.14 7429.76+/-0.03 852 899+/-39
9S0 8262.65 8269.67+/-0.06 840 1265+/-67



Spheroidal mode splitting function coefficients

For each mode the first line contains the coefficients and the second line the error estimates. The tabulated coefficients Ast and Bst are related to the complex splitting-function coefficients cst defined by $c_{st}=(-1)^t(2\pi)^{1/2}(A_{st}-iB_{st})$ for t>0, $c_{st}=(4\pi)^{1/2}A_{st}$ for t=0, and $c_{st}=(2\pi)^{1/2}(A_{s\vert t\vert}+iB_{s\vert t\vert})$, for t<0. The coefficients are listed in unit of 10-6. Core-sensitive modes are indicated by an asterisk.

Tab-delimted text version also available.

ModeA20A21B21A22B22A40A41B41A42B42A43B43A44B44A60A61B61A62B62A63B63A64B64A65B65A66B66
0S3502457401-600-1047-5102-4-72270-13-2117123
413526738767678189344340376364385386389389
0S4836-47259-432-521-26-967-12414435150-9169-4119-235720-1419-4-34115-21-6
17916933826027412418519522816524023824324064118123126123127127126128130130130131
0S5645-271-24-527-689482-40-154-4047-1538-4-11252-15-212-11-4-904-8
1281041881701757011411712510813413513613336646771677071717172727272
0S6390-170222-885-777-693027082-1912113246207-72-8829-15105-26886237116-41238
96621591211176764958977107100869238545864547069646971726761
0S7269-174-40-626-741-44423658-596015-118132-42-133-6073-3652-2937121-59-32-40
67851068010228484552525050495014262627272828272727272727
0S8236-39142-411-9340436380-141-15214-79-22-391113-1760-392241691083391412833
73791058810134505655575456575717303231323232323331323232
0S9-276-279-67-495-8073013435-79-185-131387-8137-59-189-20-22669-62170-75145231282873
76781269010737516058586158596018343532343434343533343534
0S10-473-127-144-57-493-776549181-23-313758-1581-32-7837-37-54-60201119-84292-34392-31
79881259611933556057585757595916313231323132313131313232
1S2-38-498696-315-746375-428-292-30990-246268
477651619623986179333328345353358357359361
1S343-4568-383-646-1982-30-17-1514-76-4-1-4-16120-1-2200000
10410411313817342768194949392939322444245454545454545454545
1S4145-223185-606-843-44-109-62-32-140122810512-25-31-53-2161414-179-12-315
15612817521023910713716324423525625928628470123112138135143144149149149150149149
1S5154-22177-1078-577-45-2437556-966115197-83-241-2117-497-8203-13-4-83
1611161851922169712814416615919217420720650889210199101101103104104104105105
1S6414182-36-1392-607-61-240-3438218477-7-858113-222-330-10-15257-138-9533153-32039-94
25815831935726413118821121120022922024625565112126128125130127129129131132133134
1S7599-8-28-1172-6443-114-9135-2721024218882-1-159-44-1141890-40-3252-3557-12-16
20111125930219110312716915515216217317918852901011009810198102100102103103104
1S8760-70-64-1120-699-63-3425227-1943695168-10-35-201-111-510-17-21-371038485-17-56
1668526624519410710516815212615916816518062831071029610298101108105109112114
1S9938-211-319-1130-938-110-2110350-307122114-282-33-69-8-6338-26-34-10513122557-49
2391233003492571101471901661671841871971995599109105106106105105105106108107107
1S10980-65-615-1111-68503224194-100105-165-8490-38-33-47-34-17-10-1130-4218-109
27321445444234910417019917818619119019820051971019999100999910099101100101
2S3*1952-141104-816-793153-14717-3215769-134142-3728-100-841116-22-1632356-814
67798014310229565357585757565714282828282828282828282828
2S4101-3096-827-813-81-3469955013533-115207-1-1-52-7-1025-17-20-5-4-6-33-42
1921612282232211001501741811661781671661765294991019999981011011011029898
2S5438-881-134-655-650-27-1812-930123152208-5720-5211-12560-11-1926-38-28-7-4962
44463676774476414227928228228127928128028368136136136136136136136136136136136136
2S6-221-594586-48-1639129-27622-47-33-179170636683-209-194-164-301003316-1898-1148-47
18117224517923811913616718119517617716117865103105118116120123125124122122118118
2S8-307-668598449-1513420-260-121-51531420764-118876166-215-167-241-1-74370-30106253-100189124
997914715411844678074717879828422414242424243424342424343
3S1*9925-53-134120
883830271277
3S2*3706-214-30418-502-145-473-126-862-153-217-140-44172
171223211297261133205161227215151155241257
3S8*526-237315-735-120973-187-12830-16310988-904869-243-67-101-3856122-76-82-6645-7465
1501762302202225710410910610710710911110928555555555555555555555555
4S1285-281-103-62-265
102108113236235
4S24-141151237-456120254-26-6207-1088140
7661548188325749576064646767
4S34490121-201-36250-81-81-123-46671713616816-10959440-89781-404946-2
603937495335445568716258575120394031343739363738394343
4S4-21-26258-481-896408739-283-90263218-25579-32-212234-96-34-57-291-52382012842-50
1681411952062041001281491631571931531701655595106104107104102104106108107100103
5S3*358-272186-560-694-35165-2711-532350-382383-5-136-4945-29222144772640
2111651782212209615516317716118617917717049101988090979894949897100100
5S4-45-14932-80-342-23-9-45-2911360-255347-484-25136524548952512-41
583037614426334344404244444212232425232525252525252525
5S5-28-71146-295-610-34-119-68-46671769114134-1812-1929-6145310-39-55-2514-17
704270845031455453474752545215272929283030292929303029
5S6-41-88344-487-701-30-172-43912615542-1381985-30-4245-49-2516-299-7-2035-30
633976826030404846454747505015272928282929292928292828
5S7-956285-546-715-5-239-8-1471791153264-20-113-5-43-53-2382121-15-126118-18
593259654034435650504952484917313332333333343332323233
5S867-11233-531-862-204-162-43765711310650223-58-138-819-7212075-36440-2850-42
1066111213011450718683797981868125474848484848484847474747
5S12292-89628-405-117480-423-3802148124634-221130-218-37-196-83-112166-5225-16-363650
92741159911261658773748582879135456050515152555556525655
6S3*1760114199-305-612287-290-134-806610428168-4636-39-1766710150-10432-259-15299
959190879049788310110210398818826475046475250505052515253
6S10290-56494-485-1124-17-221-22514852120261-21290-58-138-122-118-106-37241-1158857185168
624393677059477156627964645840385447485144445248514243
7S4*388736519-882-732-123-295-4303-189183-252-256-16-17225771624829-39-99354-25135
21419022626822715922024526126727725921927486153161154154164163170165167163148156
7S5*462-87204-446-485-33-74-41-97-4262101-38-7-9-44-129-41519-2023-17111630-23
515761565239566275777476656821393842414242424142424241
7S62021377-373-567-73-5074-62-3094231-12551-41-41-65-4-183743-30-36540-69
613861546644536066737567575822384043454544444544444342
7S7297-47325-533-684-91-118-94202670150-29192-73-46-69-82-3591269-723122126-92-1
664264517859486352637651686239415052615753496751544846
8S1*379146109-24-175
2261503339
8S5*943-18235726-441-21256-458-513-3590-40-2031596213-60-908148-1166771281215114
605854736139656268676967546420363738384040403940393536
8S7361-204634-1034-1012-101-227-49-29732636182-286-143-25-19-217-59-156-2764-164-19115-4130-34
494063616948526660677063606732484753506157535752554549
9S3*1038-15347377230-225-41-1978-2-79128-36136-229053-49-61092-1622-1635-229
118141139121140499596104105100101787825474849494748464750504949
9S141066135-740-1043-97-34318-1541-53-202560-58-135-148-136-11105-103127-10116-48188
905298134126614285696283829610735385948394550534848545247
11S4*9984839-42-530145-144-155-176310-83-34-54-71-1790-32-40-20681173-43-839815349106
192022272625232255574349354120232534393536414743392126
11S5*73348206-50-273-16-50-46-23053-15867-112123-55-87-36-26-24-538-23-2519-1987-11
635648625235545564656265475817313334343535353535353433
12S854-34280-468-728-128-18596184-451026411331-11-16-24-50-40-7214523-57-17-3628-1
493350496840434944495851584924354038394440424238403438
12S12255-275584-323-581-26-199-9750-9844-37-1292141-32-52-363-32145414738-9142-51
655589739933435247495252555417293230303030303030313030
13S1*1243348-87256-224
9633321414377
13S2*1342-53-26190230272-295-310802831395937147
3139424251162823323231291330
13S3*778265-81-84-13951-44-174-4616-17714145-207-10271-9-9-280-11-41-41-24341
272740414323323462604446364615202329282828292930262422
16S5*1099-57188-285-524-84-376-4646-63-2131512-80-4-282130-42-22-262115442-8
414552494530525360615360465716303032313233343433332930
16S7*553673-223600-656521180229-4632-97-29-826437-4525-734-62-482914
805281817835546156575660585817323433343234343433343333
17S1*-130-15469-11-53
144185152228260
17S12465-209265-413-1017107-175109-975-266722924948-107-7-327776010879260854118
2542413583223689715818516418518417818118347919392929390929292939292
17S13371-104318-438-849158-139-17-20-7-136163-2316255-120-23-2594048262624069111160
443863476342365541476149485428324436333938424039433136
18S3*77139211-307-381177-142-158-19717-79-322715410-3125-42-3-92814129-47-1162-71
395962616623494955575655383813252325262727252527272523
18S4*886191-18-141-19670-95-197987148125-10615-26-129-634220127-4793-25-16115
354436353419303139403939313210171920202020192020201717
21S6*974-370-65-22033-548325281-2746-1222876-5726-28-22-2320-467-21-1-3148
107728899987099107123127132116978935656569717270727172726265
21S7*805-12-60144-10356-344146127117-54167-14322528-31-75-173-1198-77-9680186323328
12191931621578610610815615115115113815145777488878889919291908587
21S8*75310613-26-188-150-19-58-17414142241-87136198-17-56-59202-1446623487466023
102849214012861939810910711011511510131575860615961626160626060
23S4*768-11-28-320-427-4082-35-85-71-783646-859223-29-20-1744-3-3054-3
5811479776734656577787775737019363738383838383838383033
23S5*6983126939-42862-45-57-2717-12229163184-18-29-612300413113-8-2940
566467719538586680807781736920383840414141414141413939
27S1*742769694-263-176
1183602707086



Toroidal mode frequencies, Q, and splitting function coefficients

Center frequencies f, quality factors Q, and degree 2 splitting function coefficients for the 11 toroidal modes (Tromp & Zanzerkia, 1995). For each mode the first row contains the results for a starting model that consists of rotation and ellipticity plus SKS12WM13, and the second row lists the associated standard deviations. To demonstrate that the splitting coefficients are reasonably robust, we list the results for a starting model that consists of rotation and ellipticity only in the third row. The fact that we have roughly half as many recordings for modes 0T4 and 0T5 as we do for the other modes is reflected in the relatively poor agreement between the splitting coefficients obtained for the different starting models. The tabulated coefficients Ast and Bst are related to the complex splitting function coefficients cst defined by $c_{st}=(-1)^t(2\pi)^{1/2}(A_{st}-iB_{st})$ for t>0, $c_{st}=(4\pi)^{1/2}A_{st}$ for t=0, and $c_{st}=(2\pi)^{1/2}(A_{s\vert t\vert}+iB_{s\vert t\vert})$, for t<0 (Li et al., 1991). The center frequencies are listed in $\mu$Hz and the coefficients are listed in unit of 10-6.

Also available as tab-delimited text file.

ModefQA20A21B21A22B22
0T4 765.83 195 57 102 184 -20 -664
0.44 48 304 412 348 388 389
765.86 196 -101 34 -145 393 -512
0T5 928.87 192 178 -498 -3 -52 -631
0.40 37 253 395 318 412 284
929.17 179 68 -370 -276 221 -29
0T6 1079.17 215 252 -561 66 -328 -993
0.20 10 170 208 220 216 242
1079.23 240 257 -516 15 -330 -953
0T7 1220.97 194 263 -198 216 -157 -1244
0.37 15 322 373 437 407 419
1221.01 194 214 -197 234 -162 -1143
0T8 1356.43 186 25 -558 113 156 -1169
0.35 29 236 286 293 309 326
1356.87 187 143 -513 -145 456 -723
0T9 1487.14 189 114 -518 56 213 -1367
0.23 18 181 170 230 195 234
1487.46 190 158 -195 -285 211 -873
1T1 1235.06 230 48 -95 -148 443 18
0.67 25 46 474 212 243 287
1235.49 206 97 -2 -204 329 230
1T2 1319.07 283 -415 -112 14 229 -294
0.32 20 86 294 266 247 256
1319.28 321 -318 -76 -68 197 -279
1T3 1438.37 255 -115 -59 98 -404 -519
0.50 53 313 428 516 488 437
1438.35 257 -89 -3 111 -563 -546
1T4 1585.20 287 86 -191 75 -567 -823
0.70 81 302 523 537 423 482
1585.32 309 101 -53 -258 -23 -538
1T6 1925.29 252 376 -240 156 -1040 -1066
0.38 36 213 201 284 285 305
1925.41 248 193 -150 -146 -731 -907


References

  • He, X., & Tromp, J., 1996.
    Normal-mode constraints on the structure of the mantle and core.
    J. Geophys. Res. 101, 20,053-20,082.
  • Tromp, J., & Zanzerkia, E., 1995.
    Toroidal splitting observations from the great 1994 Bolivia and Kuril Islands earthquakes.
    Geophys. Res. Lett. 22, 2297-2300.

Department of Earth and Planetary Sciences / Harvard University / 20 Oxford Street / Cambridge / MA 02138 / U.S.A. / Telephone: +1 617 495 2350 / Fax: +1 617 496 1907 / Email: reilly@eps.hartvard.edu